Seminar on p-adic Hodge Theory

ثبت نشده
چکیده

3 Construction of BdR 4 3.1 Witt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Lifting to a Perfect Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Carrying Out the Lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stringy Hodge Numbers and P-adic Hodge Theory

Stringy Hodge numbers are introduced by Batyrev for a mathematical formulation of mirror symmetry. However, since the stringy Hodge numbers of an algebraic variety are defined by choosing a resolution of singularities, the well-definedness is not clear from the definition. Batyrev proved the well-definedness by using the theory of motivic integration developed by Kontsevich, Denef-Loeser. The a...

متن کامل

G-VALUED CRYSTALLINE REPRESENTATIONS WITH MINUSCULE p-ADIC HODGE TYPE

We study G-valued semi-stable Galois deformation rings where G is a reductive group. We develop a theory of Kisin modules with G-structure and use this to identify the connected components of crystalline deformation rings of minuscule p-adic Hodge type with the connected components of moduli of “finite flat models with G-structure.” The main ingredients are a construction in integral p-adic Hod...

متن کامل

WITT VECTORS WITH p-ADIC COEFFICIENTS AND FONTAINE’S RINGS

We describe an alternate construction of some of the basic rings introduced by Fontaine in p-adic Hodge theory. In our construction, the central role is played by the ring of p-typical Witt vectors over a p-adic valuation ring, rather than theWitt vectors over a ring of positive characteristic. This suggests the possibility of forming a meaningful global analogue of p-adic Hodge theory.

متن کامل

CMI SUMMER SCHOOL NOTES ON p - ADIC HODGE THEORY ( PRELIMINARY VERSION )

Part I. First steps in p-adic Hodge theory 4 1. Motivation 4 1.1. Tate modules 4 1.2. Galois lattices and Galois deformations 6 1.3. Aims of p-adic Hodge theory 7 1.4. Exercises 9 2. Hodge–Tate representations 10 2.1. Basic properties of CK 11 2.2. Theorems of Tate–Sen and Faltings 12 2.3. Hodge–Tate decomposition 15 2.4. Formalism of Hodge–Tate representations 17 2.5. Exercises 24 3. Étale φ-m...

متن کامل

THE Λ-ADIC EICHLER-SHIMURA ISOMORPHISM AND p-ADIC ÉTALE COHOMOLOGY

We give a new proof of Ohta’s Λ-adic Eichler-Shimura isomorphism using p-adic Hodge theory and the results of Bloch-Kato and Hyodo on p-adic étale cohomology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014